BOSTON NIVERSITY

Deep Learning for Data Science DS 542

Lecture 04 Deep Neural Networks

Slides originally by Thomas Gardos. Images from [Understanding Deep Learning](https://udlbook.com) unless otherwise cited.

Today's Plan

- Recap: Shallow Neural Networks
- Deep Neural Networks

1 live demo / preview at the end of each section.

Recap: Shallow Neural Networks

 $y = \phi_0 + \phi_1 \partial_{10} + \theta_{11} x + \phi_2 \partial_{10} + \theta_{21} x + \phi_3 \partial_{10} + \theta_{31} x$.

Recap: Rectified Linear Unit as Default Activation Function

The discontinuity (bend) in the activation function shapes the hidden layer outputs.

$$
a[z] = ReLU[z] = \begin{cases} 0 & z < 0 \\ z & z \ge 0 \end{cases}.
$$

Rectified Linear Unit (a very common activation function)

Recap: Depicting Neural Networks

Each parameter multiplies its source and adds to its target. Usually we will skip drawing one / bias nodes.

Recap: Universal Approximation

With enough hidden units, we can describe any 1D function to arbitrary accuracy...

Recap: Shallow Neural Networks

Fitting a dataset where each sample has 2 inputs and 1 output.

Live Demo

- WIP reproducing the universal approximation example
	- Start whipping this up yesterday afternoon.
	- Not quite working.
	- But some informative failures to share.

Deep neural networks

- Composing two networks
- Combining the two networks into one
- Hyperparameters
- Notation change and general case
- Shallow vs. deep networks

Composing two networks.

$h_1 = a[\theta_{10} + \theta_{11}x]$		
$Network$	$h_2 = a[\theta_{20} + \theta_{21}x]$	$y = \phi_0 + \phi_1h_1 + \phi_2h_2 + \phi_3h_3$
1:	$h_3 = a[\theta_{30} + \theta_{31}x]$	
$h'_1 = a[\theta'_{10} + \theta'_{11}y]$		
$Network$	$h'_2 = a[\theta'_{20} + \theta'_{21}y]$	$y' = \phi'_0 + \phi'_1h'_1 + \phi'_2h'_2 + \phi'_3h'_3$
2:	$h'_3 = a[\theta'_{30} + \theta'_{31}y]$	

Composing two networks: Example

Assume:

- **ReLU Activation**
- Slopes and Intercepts as shown^{1.0}
- 3 hidden units in each

Example: Pick parameters so that $x \in [-1,1]$ maps to $y \in [-1,1]$ with alternating slope

Composing two networks: Example

Assume:

- ReLU Activation
- Slopes and Intercepts as shown
- 3 hidden units in each

Example: Pick parameters so that $x \in [-1,1]$ maps to $y \in [-1,1]$ with alternating slope

Let's see what happens when we map $x \rightarrow y \rightarrow y'$

This makes the most sense to me if the first function goes from the minimum to the maximum and back…

Alternate Visualization

Comparing to shallow with six hidden units

- 20 parameters
- (at least) 9 regions

- 19 parameters
- Max 7 regions
Composing networks in 2D

Deep neural networks

- Composing two networks
- Combining the two networks into one
- Hyperparameters
- Notation change and general case
- Shallow vs. deep networks

Combine two networks into one

Hidden units of second network in terms of

first:

$$
h'_1 = a[\theta'_{10} + \theta'_{11}y] = a[\theta'_{10} + \theta'_{11}\phi_0 + \theta'_{11}\phi_1h_1 + \theta'_{11}\phi_2h_2 + \theta'_{11}\phi_3h_3]
$$

\n
$$
h'_2 = a[\theta'_{20} + \theta'_{21}y] = a[\theta'_{20} + \theta'_{21}\phi_0 + \theta'_{21}\phi_1h_1 + \theta'_{21}\phi_2h_2 + \theta'_{21}\phi_3h_3]
$$

\n
$$
h'_3 = a[\theta'_{30} + \theta'_{31}y] = a[\theta'_{30} + \theta'_{31}\phi_0 + \theta'_{31}\phi_1h_1 + \theta'_{31}\phi_2h_2 + \theta'_{31}\phi_3h_3]
$$

Create new variables: ψ (psi)

$$
\begin{array}{c} \theta: \text{theta} \\ \phi: \text{phi} \\ \psi: \text{psi} \end{array}
$$

$$
h'_1 = a[\theta'_{10} + \theta'_{11}y] = a[\theta'_{10} + \theta'_{11}\phi_0 + \theta'_{11}\phi_1h_1 + \theta'_{11}\phi_2h_2 + \theta'_{11}\phi_3h_3]
$$

\n
$$
h'_2 = a[\theta'_{20} + \theta'_{21}y] = a[\theta'_{20} + \theta'_{21}\phi_0 + \theta'_{21}\phi_1h_1 + \theta'_{21}\phi_2h_2 + \theta'_{21}\phi_3h_3]
$$

\n
$$
h'_3 = a[\theta'_{30} + \theta'_{31}y] = a[\theta'_{30} + \theta'_{31}\phi_0 + \theta'_{31}\phi_1h_1 + \theta'_{31}\phi_2h_2 + \theta'_{31}\phi_3h_3]
$$

$$
h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]
$$

\n
$$
h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]
$$

\n
$$
h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]
$$

Two-layer network

 θ : theta ϕ : phi ψ : psi

$$
h_1 = a[\theta_{10} + \theta_{11}x]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x]
$$

\n
$$
h_4 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]
$$

\n
$$
h_5 = a[\psi_{20} + \psi_{21}h_2 + \psi_{22}h_2 + \psi_{23}h_3]
$$

\n
$$
h_6 = a[\psi_{30} + \psi_{31}h_2 + \psi_{32}h_2 + \psi_{33}h_3]
$$

$$
y' = \phi'_0 + \phi'_1 h'_1 + \phi'_2 h'_2 + \phi'_3 h'_3
$$

Two-layer network as one equation

$$
h_1 = a[\theta_{10} + \theta_{11}x]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x]
$$

\n
$$
h_4' = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]
$$

\n
$$
h_5' = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]
$$

\n
$$
h_6' = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]
$$

$$
y' = \phi'_0 + \phi'_1 h'_1 + \phi'_2 h'_2 + \phi'_3 h'_3
$$

 $y' = \phi'_0 + \phi'_1$ a $[\psi_{10} + \psi_{11}$ a $[\theta_{10} + \theta_{11} x] + \psi_{12}$ a $[\theta_{20} + \theta_{21} x] + \psi_{13}$ a $[\theta_{30} + \theta_{31} x]$ $+ \phi'_2a[\psi_{20} + \psi_{21}a[\theta_{10} + \theta_{11}x] + \psi_{22}a[\theta_{20} + \theta_{21}x] + \psi_{23}a[\theta_{30} + \theta_{31}x]]$ $+ \phi'_3a[\psi_{30} + \psi_{31}a[\theta_{10} + \theta_{11}x] + \psi_{32}a[\theta_{20} + \theta_{21}x] + \psi_{33}a[\theta_{30} + \theta_{31}x]]$

Remember shallow network with two outputs?

● 1 input, 4 hidden units, 2 outputs

$$
h_1 = a[\theta_{10} + \theta_{11}x]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x]
$$

\n
$$
h_4 = a[\theta_{40} + \theta_{41}x]
$$

$$
y_1 = \phi_{10} + \phi_{11}h_1 + \phi_{12}h_2 + \phi_{13}h_3 + \phi_{14}h_4
$$

$$
y_2 = \phi_{20} + \phi_{21}h_1 + \phi_{22}h_2 + \phi_{23}h_3 + \phi_{24}h_4
$$

Networks as composing functions

$$
h_1 = a[\theta_{10} + \theta_{11}x] \qquad h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x] \qquad h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x] \qquad h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]
$$

Consider the pre-activations at the second hidden units At this point, it's a one--layer network with three outputs

Networks as composing functions

$$
h_1 = a[\theta_{10} + \theta_{11}x] \qquad h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x] \qquad h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x] \qquad h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]
$$

Consider the pre-activations at the second hidden units At this point, it's a one--layer network with three outputs

Let's walk through example activations starting with pre-activations to the 2nd layer.

Like a shallow network with three hidden units and three outputs.

Deep neural networks

- Composing two networks
- Combining the two networks into one
- Hyperparameters
- Notation change and general case
- Shallow vs. deep networks

Hyperparameters

- K layers = depth of network
- D_k hidden units per layer = width of network
- These are called hyperparameters chosen before training the network
- Can try retraining with different hyperparameters hyperparameter optimization or hyperparameter search
	- This can be either manual or automated (e.g. Hyperparameter Tuning with **Ray Tune**

Deep neural networks

- Composing two networks
- Combining the two networks into one
- Hyperparameters
- Notation change and general case
- Shallow vs. deep networks

Propose 3 notation changes to be able to generalize to arbitrary deep neural networks.

 $h_1 = a[\theta_{10} + \theta_{11} x]$ $h_2 = a[\theta_{20} + \theta_{21} x]$ $h_3 = a[\theta_{30} + \theta_{31} x]$

 $h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$ $h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]$ $h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$

 $y' = \phi'_0 + \phi'_1 h'_1 + \phi'_2 h'_2 + \phi'_3 h'_3$

Vector Notation

$$
h_1 = a[\theta_{10} + \theta_{11}x]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x]
$$

$$
\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \mathbf{a} \left[\begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x \right]
$$

 $h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$ $h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]$ $h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$

 $y' = \phi'_0 + \phi'_1 h'_1 + \phi'_2 h'_2 + \phi'_3 h'_3$

Vector Notation

$$
h_1 = a[\theta_{10} + \theta_{11}x]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x]
$$

$$
\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \mathbf{a} \left[\begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x \right]
$$

 $h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$ $h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]$ $h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$

$$
\longrightarrow \begin{bmatrix} h_1' \\ h_2' \\ h_3' \end{bmatrix} = \mathbf{a} \begin{bmatrix} \psi_{10} \\ \psi_{20} \\ \psi_{30} \end{bmatrix} + \begin{bmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}
$$

Vector & Matrix Notation

$$
h_1 = a[\theta_{10} + \theta_{11}x]
$$

\n
$$
h_2 = a[\theta_{20} + \theta_{21}x]
$$

\n
$$
h_3 = a[\theta_{30} + \theta_{31}x]
$$

\n
$$
\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \mathbf{a} \begin{bmatrix} \theta_{10} \\ \theta_{20} \\ \theta_{30} \end{bmatrix} + \begin{bmatrix} \theta_{11} \\ \theta_{21} \\ \theta_{31} \end{bmatrix} x
$$

 $h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$ $h'_1 = a[\psi_{10} + \psi_{11}h_1 + \psi_{12}h_2 + \psi_{13}h_3]$
 $h'_2 = a[\psi_{20} + \psi_{21}h_1 + \psi_{22}h_2 + \psi_{23}h_3]$
 $h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$
 $h'_5 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$
 $h'_6 = a[\psi_{10} + \psi_{11}h'_3 + \psi_{12}h'_2 + \psi_{1$ $h'_3 = a[\psi_{30} + \psi_{31}h_1 + \psi_{32}h_2 + \psi_{33}h_3]$

$$
y' = \phi'_0 + \phi'_1 h'_1 + \phi'_2 h'_2 + \phi'_3 h'_3 \longrightarrow y' = \phi'_0 + \begin{bmatrix} \phi'_1 & \phi'_2 & \phi'_3 \end{bmatrix} \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \end{bmatrix}
$$

Notation Reminder x, ψ : normal lower case -- scalar x, ψ : bold face lower case -- vector X, Ψ : bold face upper case -- matrix

$$
\begin{bmatrix}\nh_1 \\
h_2 \\
h_3\n\end{bmatrix} = \mathbf{a} \begin{bmatrix}\n\theta_{10} \\
\theta_{20} \\
\theta_{30}\n\end{bmatrix} + \begin{bmatrix}\n\theta_{11} \\
\theta_{21} \\
\theta_{31}\n\end{bmatrix} x\n\begin{bmatrix}\n\cdots \\
\theta_{1n} \\
\theta_{2n}\n\end{bmatrix}
$$
\n
$$
\mathbf{h} = \mathbf{a} [\theta_0 + \theta x]
$$
\n
$$
\begin{bmatrix}\nh'_1 \\
h'_2 \\
h'_3\n\end{bmatrix} = \mathbf{a} \begin{bmatrix}\n\psi_{10} \\
\psi_{20} \\
\psi_{30}\n\end{bmatrix} + \begin{bmatrix}\n\psi_{11} & \psi_{12} & \psi_{13} \\
\psi_{21} & \psi_{22} & \psi_{23} \\
\psi_{32} & \psi_{33}\n\end{bmatrix} \begin{bmatrix}\nh_1 \\
h_2 \\
h_3\n\end{bmatrix}
$$
\n
$$
\mathbf{h}' = \mathbf{a} [\boldsymbol{\psi}_0 + \boldsymbol{\Psi} \mathbf{h}]
$$
\n
$$
\mathbf{y}' = \phi'_0 + [\phi'_1 \quad \phi'_2 \quad \phi'_3] \begin{bmatrix}\nh'_1 \\
h'_2 \\
h'_3\n\end{bmatrix}
$$
\n
$$
\mathbf{y}' = \boldsymbol{\phi}'_0 + \boldsymbol{\phi}'^T \mathbf{h}'
$$

$$
y' = \phi'_0 + \phi'^T h'
$$

Notation change #2

 ω : omega Ω : Omega

Notation change #3

$$
\mathbf{h}' = \mathbf{a} \left[\boldsymbol{\psi}_0 + \boldsymbol{\Psi} \mathbf{h} \right] \longrightarrow \mathbf{h}_2 = \mathbf{a} [\boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{h}_1]
$$

$$
y = \phi'_0 + \phi' \mathbf{h}' \qquad \qquad y = \beta_2 + \Omega_2 \mathbf{h}_2
$$

General equations for deep network

 $\frac{1}{2}$

$$
\begin{aligned} \mathbf{h}_1 &= \mathbf{a}[\boldsymbol{\beta}_0 + \boldsymbol{\Omega}_0 \mathbf{x}] \\ \mathbf{h}_2 &= \mathbf{a}[\boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{h}_1] \\ \mathbf{h}_3 &= \mathbf{a}[\boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{h}_2] \end{aligned}
$$

$$
\mathbf{h}_{K} = \mathbf{a}[\boldsymbol{\beta}_{K-1} + \boldsymbol{\Omega}_{K-1}\mathbf{h}_{K-1}]
$$

$$
\mathbf{y} = \boldsymbol{\beta}_{K} + \boldsymbol{\Omega}_{K}\mathbf{h}_{K},
$$

 $\mathbf{y} = \boldsymbol{\beta}_K + \boldsymbol{\Omega}_K \mathbf{a} \left[\boldsymbol{\beta}_{K-1} + \boldsymbol{\Omega}_{K-1} \mathbf{a} \left[\dots \boldsymbol{\beta}_2 + \boldsymbol{\Omega}_2 \mathbf{a} \left[\boldsymbol{\beta}_1 + \boldsymbol{\Omega}_1 \mathbf{a} \left[\boldsymbol{\beta}_0 + \boldsymbol{\Omega}_0 \mathbf{x} \right] \right] \dots \right]$

Example

Deep neural networks

- Composing two networks
- Combining the two networks into one
- Hyperparameters
- Notation change and general case
- Shallow vs. deep networks

The best results are created by deep networks with many layers.

- 50-1000 layers for most applications
- Best results in
	- Computer vision
	- Natural language processing
	- Graph neural networks
	- Generative models
	- Reinforcement learning

All use deep networks. But why?

1. Ability to approximate different functions?

Both obey the universal approximation theorem.

Argument: One layer is enough, and for deep networks could arrange for the other layers to compute the identity function.

2. Number of linear regions per parameter

Number of linear regions per parameter

Number of linear regions per parameter

- 2. Number of linear regions per parameter
- Deep networks create many more regions per parameters
- But there are dependencies between them
	- Think of folding example
	- Perhaps similar symmetries in real-world functions? Unknown

3. Depth efficiency

- There are some functions that require a shallow network with exponentially more hidden units than a deep network to achieve an equivalent approximation
- This is known as the depth efficiency of deep networks
- But do the real-world functions we want to approximate have this property? Unknown.

4. Large structured networks

- \bullet Think about images as input might be 1M pixels
- Fully connected works not practical
- Answer is to have weights that only operate locally, and share across image
- This leads to convolutional networks
- Gradually integrate information from across the image needs multiple layers
Shallow vs. Deep Networks

5. Fitting and generalization

- Fitting of deep models seems to be easier up to about 20 layers
- Then needs various tricks to train deeper networks, so (in vanilla form), fitting becomes harder
- Generalization is good in deep networks. Why?

Shallow vs. Deep Networks

5. Fitting and generalization

● Fitting of deep models is also faster

Figure 20.2 MNIST-1D training. Four fully connected networks were fit to 4000 MNIST-1D examples with random labels using full batch gradient descent, He initialization, no momentum or regularization, and learning rate 0.0025. Models with $1,2,3,4$ layers had 298, 100, 75, and 63 hidden units per layer and 15208, 15210, 15235, and 15139 parameters, respectively. All models train successfully, but deeper models require fewer epochs.

Tensorflow Playground Example?

- Try 2 inputs, 3 hidden units, 1 output
- You can inspect and/or edit weights and biases

Do you ever get stuck in local minima? Are you getting the expected number of regions?

Where are we going?

- We have defined families of very flexible networks that map multiple inputs to multiple outputs
- Now we need to train them
	- How to choose loss functions for different types of targets (Read Ch. 5)
	- How to find minima of the loss function
	- How to do this efficiently with deep networks
- Then how do we evaluate them?

Reading

- Understanding Deep Learning, Chapter 5
- "Deep Learning" by Yann LeCun, Yoshua Bengio, Geoffrey Hinton
	- <https://www.nature.com/articles/nature14539>

Next Week

● Loss Functions

Feedback?

